HYDRODYNAMIC ANALYSIS OF SHOCK ADIABATS
OF HETEROGENEOUS MIXTURES OF SUBSTANCES

V. N. Nikolaevskii

We examine shock transformations in heterogeneous continua at high pressures, when each of the
phases can be considered as a liguid (neglecting strength effects). We identify the variants of the state of
complete interphase thermomechanical equilibrium and the temperature-frozen state immediately behind
the shock. The compression of each of the phases in the mixture does not take place along the Hugoniot
adiabat for the continuous material. The well-known anomalously high temperature rise during compres-
sion of materials with hollow pores [1, 2] is a particular case of such deviations.

In contrast with multicomponent media, the multiphase medium is composed of heterogeneous ele-
mentary particles whose state is determined by the parameters characteristic for continuum mechanics,
namely the density, pressure, and so on; these parameters are related with one another in accordance with
the equation of state of the corresponding continuous material of the phase. In this connection, when examin-
ing shock waves in media which are a mixture of condensed matter the problem arises of calculating the
shock adiabat from the known equations of state for the phases (for example, the calculation of the shock
adiabat of rocks from the given equations of state of the petrogenic materials), or the problem of finding the
equation of state of the continuous material of one of the phases from the measured shock adiabat of the
mixture and the known equations of state of the other phases.

1. For the analysis we use the model of two interpenetrating [3, 4] deformable continuous media.
Considering only the hydrodynamic approach to the study of shock transformations, we simplify the model
[5, 6], assuming that each of the condensed phases is a compressible liquid and that the phase pressures
are equal. Then we have the equations of motion [5]
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the continuity equations for the phases
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and the total energy-balance equations {5, 6]
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Here py and p, are the densities; uj and wi are the phase velocities; m is the volumetric concentration
of the first phase; Rj is the bulk interphase interaction force, depending on the diiference of the phase
velocities; €4 and &, are the internal energies of the phases; q is the interphase heat flow., We neglect the
heat flows in each of the phases.

Multiplying Egs. (1.1) by u; and w;, respectively, we obtain the equations for the kinetic energies of
the phases. Then, subtracting them from (1.3), we obtain the conservation equations for the internal ener -~
gies of the phases:
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and the sense of the introduced coefficient @ (see [7]) becomes clear: the work Ry (wi—u;) of the bulk
interphase interaction forces transforms into heat, with the part (1—«) in phase 1, and the part « in phase
2. We recall [5, 6] that if one of the phases (the second) is a solid, while the other is a liquid, then @ = 1.

We introduce the change of the average entropies s; of the phases as the quotient of the average heat
influx {(to the particles of the phase in question per unit volume) and the average phase temperature
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The Gibbs relations for the phases is
d1€1 d 1 dysy dogs d 1 dasy (1.6)
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We assume hereafter that the functions g; = ; (p i» Si), relating the parameters averaged in an
elementary volume over the particles of the i-th phase, coincide with the relations characteristic for the
continuous material of the corresponding phase. The closing relations are the kinetic relations for Rj and
q which follow, for example, from the formalism of the thermodynamics of irreversible processes [6].

2. To analyze the shock transformations we examine, as usual [1], stationary one-dimensional
solutions of (1,1) —(1.5) to the traveling-wave type, i.e., we seek solutions which depend on the single
variable {=x—Ut. Then we obtain the conservation integrals for the over-all momentum of the medium,

pm(w — U@ 4+ py (1 —m)w — U +p =@ (2.1)
mass continuity for each of the phases
pim(u — U) = M, p (1 —m)w — U) = M, (2,2)
over -all total energy conservation
My (o +5) + My (e + 57 ) 4 mpu+ (1 —m)po = E (2.3)

momentum- and energy-balance equations for one of the phases (the first, as an example)
¢ npy — d_m_+3 (2.4)
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Multiplying (2.4) by U and subtracting from (2.5), we obtain

.
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We see from (2.4) and (2.6) that as |£ | — «, i.e., far from the transitional flow regime, the conditions
R =0, g =0 are satisfied, which means u=w, T; = Ty;in these distant regions the conditions of mechanical
and thermodynamic interphase equilibrium are satisfied.

3. If in the transitional flow region,shock transition from one state into the other is realized, the
integrals (2.1) —(2.3) will relate the flow parameters uy, wy, py, ... ahead of the shock front with those (u,
w, and p) behind the front.

Then we obtain

Mu, +Muw, + 1 = Muy + Mw,, + po (3.1)
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where ux = u~U, wx = w—U are the phase-particle velocities relative to the shock wave front, which itself
travels with velocity U,

Integrating (2.6) over the narrow interval ¢,—h, £o+ h, which includes the shock front, and then
passing to the limit ash~0,we obtain the following relation (under the assumption that only the derivatives
cah increase without bound in the interval, while the variables w and u themselves and also their functions
g and R change stepwise, but that these changes are bounded):

M, (e; + You®) + mpuy, = My (819 + Yatbyo?) + MmoPoliyo (3.4)

The closing relation must be the corollary from the equation of motion (2.4) of one of the phases,
relating the motion parameters of this phase ahead ofand behind the shock. It is also written in the form

M*E-f‘—pl—ﬁ—m—pl (3.5)

Hence we see immediately that integration in the general case for p; = p4 (p, Ty requires preliminary
expression from the indicated finite relations of the temperature T, in terms of the quantities U and p, and
this involves analytic difficulties and in principle is possible only for a priori known equations of state of
the phases. Only in the particular case of relatively small thermal part of the pressure, when p; = p(p),
can (3,5) be reduced to a simple balance relation [8, 91.

4, 1In the following we examine the case of such a large interphase interaction force R that the follow-
ing condition is satisfied almost immediately behind the shock:

u=w (4.1)

n

For computational purposes we assume that (4.1) is satisfied immediately behind the shock front, i.e.,
it closes the balance relations (3.1) —(3.4). In this case the mass-balance equations (3.2) imply conser-
vation of the phase mass concentrations in the flow,

mpy o Ml
mpi+(1—m)pe ~ Mi+ M, (4.2)
__(A—=mp M, = const, x; +xp=1 “
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We introduce the phase specific volumes v; and the heterogeneous medium specific volume V (see
also [10])

1 1 1
= = = S S 4.3
vy o vy o V= 20, + 20 | p—y (4.3)

Then (3.1) and (3.2) for u, = wy = —U are written in the form

2 U2 U (4.4)
%“)‘P:VO—-FPO, %3——‘,—0
and may be transformed to the usual form
— —p
2=V %:”%, k= V2 50_; (4.5)

With the use of (4.4) the internal-energy increase of the medium (3.3) is written in the form

zy (8 — €19) + 2y (8 — £59) = Yo (p + po) Vo —V) (4.6)
where &4 = g4(vy, T), €5 = &5 (vy, T). We note the possibility of the transformation

Vo=V =Vy (1 — p1omgv; — Paoll — me)zy) = Vo (mg — prome»y
41— mp — Py (1 — me)v;) = (V19 — ¥1) + 2y (Voo — )

408



Therefore the balance relation (4.6) for the phase energies can also be written in the form

Iy {51 —gyp— Yo P+ Do) (V10 — 1’1)} -+ zy {82 — 859 — Y2 (P + Po) (V2o — Uz)} =0 (4.7
5. We first examine the situation in which heat exchange between the phases is so intense (q large)

that we can consider the phase temperatures equal immediately behind the front,
T,=T,=T (5.1)

Then (5.1) replaces (3.4). Let the internal energy of ¢; of the i-th phase be connected with the pres-
sure p and volume vj by the usual relation

2 (P—pi") (5.2)

g =X, (v) +efly =X, (v;) + ERRORE

Here Xi(vi) and pix are the cold energy and pressure of the material of the i-th phase; ciV is its
specific heat at constant volume; I'j (v;) is the Gruneisen coefficient [1]. Then (4.5) states that

np—p*@) _ n(p—p*) (5.3)
Lym)e® Ty (v2) ¢2”
and together with the equation
D e Y ATAJRELL o O I (5.4)

defines the degree of compression of the material of each of the phases behind the wave front, Here we have
neglected the energy e, and pressure p,; as usual (for moderately strong shock waves [1]).

If the compression of the material of each of the phases were to take place along its shock adiabat,
then (5.3) would be equivalent to the condition of vanishing of one of the braces in (5.4), which cannot occur
in the general case.

6. A study of the thermodynamic properties of substances from observations of the passage of shock
waves through a disperse mixture of the condensed substances was undertaken in {11, 12]. It was assumed
that the state immediately behind the shock wave front is in mechanical equilibrium but is thermally frozen
(adiabatic) (the dimensions of the particles of each of the phases are an order larger than the characteristic
temperature-rise scales during the time of the shock compression process — about 107¢ sec),

These conditions correspond to (4.5), (4.7) together with (3.4), which can also be written in the form
8L — &9 - poy — povio = Yo (p — po) V + Vo) (6.1)

Or ‘Xy = X, Xy = 1 —X)
& — & = Yo (p+po) Vo —V) + (1 — 2) {p (vs — ) — po (Va0 — v10)} (6.2)

If we can neglect the initial values g;, py, the shock-adiabat equations (4.7) and (6.2) take the form

1181 + 208y = Yop Vo — V) (6.3)
gy = Yop(Vo — V) + (1 — 2)p (v — vy) (6.4)
Hence
g = Yy pVy — VY + zp (v, — v3) (6.5)
The relations (6.4), (6.5) for shock compression of the phases can also be written in the form
g, = Yop(vyg — 1) + (1 — 2)Yop(vag — v35 + 2, — 1) (6.6)
£y = Yap(vag — 0p) + 2Yap(v1 — gy -+ o, — ) (6.7)

Equations {6.3) and (6.4) show that the work which is expended on increasing the internal energy of
the mixture of substances is distributed nonuniformly among the phases, and this distribution depends both
on the mass content of the substances in the mixture and the magnitudes of the specific volumes of the
phases in the compressed state [see (6.4) and (6.5)].

The second terms on the right-hand sides of (6.6) and (6.7) show how much the shock compression of
the materials of the phases in the mixtures deviates (to the right or left on the pv-plane for the same p) from
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the shock compression curve for these of materials in the monolithic state (as a function of the magnitudes
of the specific volumes of the phases). Here it is significant that the internal energy of one of the phases
increases more and that of the other increases less than along the Hugoniot adiabats of the corresponding
continua,

In experimental studies [13] it is possible to measure the shock wave velocity U and the mass velocity
ux, and the initial state of the medium is known, i.e., in the case in question x, vy, and vy are known. From
(4.5) we can then calculate the pressure p and specific volume V of the mixture in the compressed state, i.e.,
we can plot the shock adiabat of the mixture. If we know one of the functions &;(p, vj), i.e., pi* (vj) and
I'j(vy [see, for example, (5.2)], then using the corresponding equation (6.4) or (6.5) for each of the pairs of
values p, V = xvy + (1 —x) v, we can calculate the quantities v, and v,. Thereby we can plot the shock mix-
ture adiabats for the materials of the phases., Combination of this adiabat with the remaining equation of
the system (6.4), (6.5) leads to a differential equation of the type

f Xy p& U (@), py o1, ) =0, p¥ = — dX;/dy, (6.8)
Here the values of p, vy, and v, are taken along the adiabat (for example, p = p(vy), v; = v, (v;) are
known functions of v = vy).

If the relationT (vy) is known a priori, then it is sufficient to integrate along one of the adiabats (for a
single value of the parameter x). However, if the function T (v,) is not known a priori, the mass content of
the phases must be varied to find it,

Now let us examine the important (and already known [1, 2]) particular case in which the heteroge-
neous medium is represented by aporous material with hollow pores (the hollow pores constitute the second
"phase! of the mixture). Then we have

pao=p=0, Zr=z=1 x=1—2z=0

1—m 1—m 1 1
Tolgg = mopmo y Ty = V= v (6.9)

which permits transforming (6.4) to a form which is valid for the porous state of the substance

ot 1 1 1—m 1 (6.10)
81ﬂ7p<m0910—m91>+p m P

Hence we see that if in the course of shock compression there is complete closure of the pores, i.e.,
m =1, V=v, = 1/py, then exactly half the work performed in shock compression of the heterogeneous
medium goes to increase the internal energy €, of the first phase. The resulting anomalously high temper-
ature rise of the originally porous material is widely used for measuring its equations of state at the points
of the pv-plane above the shock adiabat of this substance in monolithic form [2].

However, if complete closure of the pores does not occur, then the equation shock adiabat (6.10) is
somewhat more complex, In the latter case, however, the hydrodynamic approach may be insufficient
(compare [141).

The author wishes to thank V. N, Rodinov for suggesting the study of the possibilities of the mixture
method [11, 12] for measurements of shock adiabats.
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